《圆柱的表面积》教学设计

时间:2025-05-20 19:50:43
《圆柱的表面积》教学设计

《圆柱的表面积》教学设计

作为一名老师,常常要根据教学需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么写教学设计需要注意哪些问题呢?以下是小编为大家收集的《圆柱的表面积》教学设计,希望对大家有所帮助。

《圆柱的表面积》教学设计1

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

(二)核心能力

运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

(三)学习目标

1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

(四)学习重点

圆柱表面积的计算

(五)学习难点

圆柱体侧面积计算方法的推导

(六)配套资源

实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

二、学习设计

(一)课前设计

自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

(二)课堂设计

1.创设情境,引入新课

师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

今天我们就来一起研究圆柱的表面积。(板书课题)

2.探究新知

(1)认识表面积

①回忆旧知

师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

学生上台演示。

小结:六个面的面积总和是长方体的表面积。

师:正方体呢?

学生自由发言。

②迁移类推新知

师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

学生操作后,自主发言。

根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

(2)探求表面积计算方法

①自主探索

师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?

学生自由发言,

师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

以小组为单位进行操作活动。

②交流汇报

各小组展示汇报,引导学生互相评价。

预设1:沿高剪开

预设2:沿斜线剪开

预设3:随意剪开或撕开

引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

③用字母表示

师:怎么用字母表示呢?

直接计算:S=Ch

利用直径计算:S=πdh

利用半径计算:S=2πrh

④归纳小结

师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

S表=S侧+2S底

师:要求圆柱的表面积需要知道哪些条件?

练一练:

第21页的做一做。

一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

学生独立完成后汇报。

师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

(3)举一反三,灵活应用

出示例4:

一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)

①理解题意

师:求多少面料就是求什么?

师:“没有底”的帽子如果展开,它由哪几部分组成?

小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

②独立完成

学生独立完成后交流汇报。

③归纳小结

师:通过计算这道题目,你有什么收获?

引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

3.巩固练习

(1)求下面圆柱的侧面积。

①底面周长是1.6m,高是0.7m。

②底面半径是3.2dm,高是5dm。

< ……此处隐藏15251个字……,师相机指导。

独立练习

学生用学具指

借助学具独立思考

学生进行空间想象

学生在方格纸上画

学生进行归纳、概括

先讨论,再独立算,然后交流汇报

三.巩固应用

1.完成“练一练”第2题

可以先让学生分别算出有关圆柱的侧面积和底面积,再算出侧面积与两个底面积大和。

2.完成练习六第1题。

注意指导学生思考问题要求的是圆柱的哪个面。

3.完成练习六第2题。

先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?学生独立练习

小交流,再练习

四.总结反思1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?畅谈体会。

发散思考

《圆柱的表面积》教学设计14

设计说明

1.在情境中建立数学与生活的联系。

《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

2.在操作中渗透转化思想。

转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

3.在应用中培养学生解决问题的能力。

“培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

课前准备

教师准备 多媒体课件

学生准备 纸质圆柱形物体 剪刀 长方形纸板

教学过程

⊙提出问题、设疑导入

1.说一说。

师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

2.想一想。

课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

3.汇报。

小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

4.交代学习目标,导入新课。

师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

《圆柱的表面积》教学设计15

一、引入新课:

昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

生:圆柱是由平面和曲面围成的立体图形。

生:我还知道圆柱各部分的名称……

生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

演示这一过程

师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

师:你还想知道什么呢?

生:还想知道怎么求它的表面积......

师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

二、探究新知

师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

指名学生摸其表面积,并追问:怎样求它的表面积?

生:六个面的面积和就是它的表面积

师:怎样求圆柱的表面积呢?(学生分组讨论)

学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

1、圆柱的侧面积

师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

展示其变化过程。

师生小结:(教师板书)侧面积=底面周长×高

呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。

(1)学生独立解答

(2)指明学生解答,并让其讲清自己的解题思路。

师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

生:底面周长和高

师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

2、圆柱的表面积

师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

指名学生说解题思路,

师:这说明要计算圆柱的表面积需要抓出哪两个量?

生:底面积和侧面积

师生小结:圆柱的表面积=底面积×2﹢侧面积

3、反馈练习:(略)

师:想一想,应该先求什么?再求什么?请大家动手试一试。

4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

三、全课小结:这节课你有什么收获?

你有没有想提醒同学们注意的地方?

生:要注意单位,还要注意所要求得圆柱有几个底面……

四、自我评价

你认为自己这节课的表现如何?

《《圆柱的表面积》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式